Stretching Bayesian Learning in the Relevance Feedback of Image Retrieval
نویسندگان
چکیده
This paper is about the work on user relevance feedback in image retrieval. We take this problem as a standard two-class pattern classification problem aiming at refining the retrieval precision by learning through the user relevance feedback data. However, we have investigated the problem by noting two important unique characteristics of the problem: small sample collection and asymmetric sample distributions between positive and negative samples. We have developed a novel approach to stretching Bayesian learning to solve for this problem by explicitly exploiting the two unique characteristics, which is the methodology of BAyesian Learning in Asymmetric and Small sample collections, thus calledBALAS. Different learning strategies are used for positive and negative sample collections in BALAS, respectively, based on the two unique characteristics. By defining the relevancy confidence as the relevant posterior probability, we have developed an integrated ranking scheme in BALAS which complementarily combines the subjective relevancy confidence and the objective feature-based distance measure to capture the overall retrieval semantics. The experimental evaluations have confirmed the rationale of the proposed ranking scheme, and have also demonstrated that BALAS is superior to an existing relevance feedback method in the current literature in capturing the overall retrieval semantics.
منابع مشابه
Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملBALAS: Empirical Bayesian learning in the relevance feedback for image retrieval
This paper is on user relevance feedback in image retrieval. We take this problem as a standard two-class pattern classification problem aiming at refining the retrieval precision by learning through the user relevance feedback data. However, we have investigated the problem by noting two important unique characteristics of the problem: small sample collection and asymmetric sample distribution...
متن کاملUsing Bayesian classifier in relevant feedback of image retrieval
Relevance feedback is a powerful technique in contentbased image retrieval (CBIR) and has been an active research area for the past few years. In this paper, we propose a new relevance feedback approach based on Bayesian classifier and it treats positive and negative feedback examples with different strategies. For positive examples, a Bayesian classifier is used to determine the distribution o...
متن کاملRelevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning
Research has been devoted in the past few years to relevance feedback as an effective solution to improve performance of content-based image retrieval (CBIR). In this paper, we propose a new feedback approach with progressive learning capability combined with a novel method for the feature subspace extraction. The proposed approach is based on a Bayesian classifier and treats positive and negat...
متن کامل